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We consider the unconditionally stable Newmark and q1-Bathe methods for the direct time integration
of the finite element equations in structural dynamics and wave propagations. In our evaluation of the
Newmark method we consider the parameters d and a, and in the q1-Bathe method we consider the
parameters c and q1, with 0 < c < 1; c–1 and q1 2 ½�1;þ1�. We show that the Newmark method as
usually used with its d and a parameters, a ¼ 0:25ðdþ 0:5Þ2 and d P 0:5, is a special case of the
q1-Bathe method. We also show that the b1=b2-Bathe method is a special case of the q1-Bathe scheme.
The study of the curves of numerical dissipation and dispersion shows that the q1-Bathe method pro-
vides effective dissipation and dispersion whereas the Newmark method lacks in that regard. To illustrate
our theoretical findings we give the results of some example solutions of structural dynamics and
wave propagations. Our study also shows that further research is needed to identify the optimal use of
the q1-Bathe scheme and other implicit methods in wave propagation analyses.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The direct time integration of the finite element equations gov-
erning structural response and wave propagations is now widely
performed in industry and the sciences. In linear analysis, other
approaches can be used, like the method of mode superposition,
but in nonlinear analysis, the direct time integration is commonly
pursued [1–3].

For the integration, explicit and implicit schemes are used. The
explicit schemes are generally conditionally stable and are used
with very small time steps for short duration events, like crush
simulations and short time wave propagations. The implicit
schemes employed are generally unconditionally stable, are used
with larger time steps in structural dynamics and also in the sim-
ulation of wave propagations. The premise of an implicit method is
that it can be used with larger time steps, thus requiring much less
time steps in a simulation. Hence, although the computational
time per time step is much larger than for an explicit scheme,
the total solution cost is less than for an explicit scheme. In addi-
tion, an implicit solution of a problem is frequently also more
robust than an explicit solution [3].
A large number of explicit and implicit time integration
schemes has been proposed and analyzed [4–22]. However, the
search for more effective methods has continued because the avail-
able schemes showed short-comings and any increase in effective-
ness can be of much value in engineering and scientific analyses.

Until about a decade ago, this search focused on requiring that
only the equilibrium at the time points t and t þ Dt be considered
in the time integration, where Dt denotes the time step. However,
there is of course no reason to not consider also time points other
than t and t þ Dt, such as the use of a composite scheme, provided
that scheme using more equilibrium points is in the overall solu-
tion more effective.

The first implicit composite schemes for structural dynamics
were probably proposed in Refs. [23,24]. The Bathe method of time
integration using two sub-steps per time step has found consider-
able use, was analysed in refs. [25–27], and extensions were pro-
posed [28,29]. Other composite time integration schemes
including explicit schemes were also proposed, see Refs. [30–39].

A very widely used implicit time integration scheme is the
unconditionally stable Newmark method with its two parameters
a and d and in particular the trapezoidal rule with a ¼ 0:25 and
d ¼ 0:5:

Our objective in this paper is to study the Newmark method and
the q1-Bathe scheme, compare the schemes and elucidate differ-
ences in solution accuracy when considering typical finite element
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analyses. Since the Bathe method uses two sub-steps per time step
Dt, we also use two sub-steps in the Newmark method; in this way
the solution effort per step is about the same. Our findings are that
the Newmark method, as typically used in practice, is a special case
of the q1-Bathe method and that the Bathe scheme, when used in
its optimal setting, shows much better dissipation and dispersion
characteristics.

2. The q‘-Bathe method and the two-step Newmark method

In this section we briefly review the time integration schemes
that we will compare and evaluate in the paper.

2.1. Basic equations and properties

In the q1-Bathe method [29], we calculate the unknown dis-
placements, velocities, and accelerations by considering the time
step Dt to consist of two sub-steps. The sub-step sizes are cDt
and ð1� cÞDt for the first and second sub-steps, respectively.

In the first sub-step, we use the trapezoidal rule for the equilib-
rium at time t þ cDt,

MtþcDt €Uþ CtþcDt _Uþ KtþcDtU ¼ tþcDtR ð1Þ

tþcDtU ¼ tUþ cDt
2

ðt _Uþ tþcDt _UÞ ð2Þ

tþcDt _U ¼ t _Uþ cDt
2

ðt €Uþ tþcDt €UÞ ð3Þ

and in the second sub-step, we use the following relations for the
equilibrium at time t þ Dt.

MtþDt €Uþ CtþDt _Uþ KtþDtU ¼ tþDtR ð4Þ

tþDtU ¼ tUþ Dtðq0
t _Uþ q1

tþcDt _Uþ q2
tþDt _UÞ ð5Þ

tþDt _U ¼ t _Uþ Dtðs0t €Uþ s1tþcDt €Uþ s2tþDt €UÞ ð6Þ
whereM, C, K are the mass, damping and stiffness matrices, and the
vectors U and R list, respectively, the nodal displacements (rota-
tions) and externally applied nodal forces (moments). An overdot
denotes a time derivative.

The parameters in Eqs. (5) and (6), s0; s1; s2; q0; q1; q2; c, can be
determined in various ways. In our previous work, we considered
the conditions for unconditional stability in linear analysis,
second-order accuracy, and complex conjugate eigenvalues of the
approximation matrix for all X0 where X0 ¼ x0Dt with x0 the
modal natural frequency.

To have second-order accuracy, we use

q0 ¼ ðc� 1Þq1 þ 1
2

q2 ¼ �cq1 þ 1
2

s0 ¼ ðc� 1Þs1 þ 1
2

s2 ¼ �cs1 þ 1
2

ð7Þ

and to have unconditional stability with the complex conjugate
eigenvalues for all X0 we use

s1 ¼ q1 ð8Þ
Lastly, to directly prescribe the amount of numerical dissipation

in the high frequency range, we use the relation between q1, c and
a new parameter, q1:

q1 ¼ q1 þ 1
2cðq1 � 1Þ þ 4

ð9Þ

where
lim
X0!1

qðAq1-BatheÞ ¼ jq1j; q1 2 �1;1½ � ð10Þ

The scheme has then two free parameters, c and q1. Previously
we only considered q1 2 0;1½ � but the negative values of
q1 2 ½�1;0� may also be used, and some benefits using a negative
value can arise, see Sections 2.3 and 3.2.

Using q1 2 0;1½ �, the scheme provides the same effective stiff-
ness matrix for each sub-step, a local maximum of amplitude
decay and the global minimum of period elongation with the fol-
lowing value for c:

c0 ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2q1

p
1� q1

; c0 ¼ 0:5 if q1 ¼ 1 ð11Þ

With the relation in Eq. (11), the method is a one-parameter
scheme and it is in that sense optimal for q1 2 0;1½ �, c 2 0; 1ð Þ.

Fig. 1 shows the spectral radii, percentage period elongations
and numerical damping ratios of the q1-Bathe method with
c ¼ 0:5 and c0 for various values of q1. The values c ¼ 0:5 and
c ¼ c0 provide practically the same curves for all q1 2 0;1½ �.

Next, we consider the usual use of the Newmark method [3,5].
To compare the Newmark and q1-Bathe methods using the same
computational costs, we employ the two-step Newmark method
with the sub-step sizes (Dt=2).

In the first sub-step of the two-step Newmark method, we con-
sider the equilibrium at time t þ Dt=2

MtþDt=2 €Uþ CtþDt=2 _Uþ KtþDt=2U ¼ tþDt=2R ð12Þ

tþDt=2 _U ¼ t _Uþ ½ð1� dÞt €Uþ dtþDt=2 €U�ðDt=2Þ ð13Þ

tþDt=2U ¼ tUþ t _UðDt=2Þ þ ½ð1=2� aÞt €Uþ atþDt=2 €U�ðDt=2Þ2 ð14Þ
and in the second sub-step we consider the equilibrium at time
t þ Dt

MtþDt €Uþ CtþDt _Uþ KtþDtU ¼ tþDtR ð15Þ

tþDt _U ¼ tþDt=2 _Uþ ½ð1� dÞtþDt=2 €Uþ dtþDt €U�ðDt=2Þ ð16Þ

tþDtU ¼ tþDt=2Uþ tþDt=2 _UðDt=2Þ þ ½ð1=2� aÞtþDt=2 €U

þ atþDt €U�ðDt=2Þ2 ð17Þ
The method is unconditionally stable when d P 0:5 and

aP 0:25ðdþ 0:5Þ2. The method is a non-dissipative second-order
accurate method when d ¼ 0:5, and a dissipative first-order accu-
rate method otherwise. The method is the commonly called trape-
zoidal rule when d ¼ 0:5 and a ¼ 0:25.

From now on we frequently refer to the Newmarkmethod using
two equal sub-steps per time step simply as the Newmark method.
Although then not explicitly stated, we always use these two sub-
steps.

Considering a given value of d, the value a ¼ 0:25ðdþ 0:5Þ2 pro-
vides the least period elongation and a larger value of d results into

more numerical damping. For the case of a ¼ 0:25ðdþ 0:5Þ2, the
ultimate spectral radius of the Newmark method is

lim
X0!1

qðANewmarkÞ ¼ ð2d� 3Þ2
ð2dþ 1Þ2 ; d P 0:5 ð18Þ

As d increases from 0.5 to 1.5, the ultimate spectral radius
decreases from 1 to 0, and as d increases from 1.5 to 1, the ulti-
mate spectral radius increases from 0 to 1.

Figs. 2 and 3 show the spectral radii, period elongations, and
numerical damping ratios of the Newmark method for various

values of j and d where a ¼ j ðdþ 0:5Þ2. We can make a number
of observations:



Fig. 1. The q1-Bathe method when n ¼ 0 with c ¼ 0:5 (solid line) and c ¼ c0 given in Eq. (11) (dashed line) for various values of q1 2 ½0;1�.
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– Firstly, for a given value of d, using a ¼ 0:25ðdþ 0:5Þ2 in the
Newmark method provides maximum numerical dissipation
and minimum numerical dispersion.

– Secondly, the numerical dissipation curves have only an

‘‘acceptable shape” for the case a ¼ 0:25 ðdþ 0:5Þ2 and
0:5 6 d 6 1:5 but even in that case the curves have the opposite
curvatures to those of the q1-Bathe scheme, see Fig. 1. The best
curvature gives very little damping at small time steps and
rapidly increasing damping at larger time steps, with the
numerical damping ratio continuously increasing as Dt=T0

increases (as shown in Fig. 1).

Since it is important to have strong numerical dissipa-
tion for the higher modes in the direct time integration,
using d to control the dissipation, the Newmark method

provides its best performance with a ¼ 0:25ðdþ 0:5Þ2 and
0:5 6 d 6 1:5.
2.2. Relations between the q1-Bathe method and the Newmark
method

We can directly show that the q1-Bathe method with q1 ¼ 1
and c ¼ 1=2, corresponds to the Newmark method using a ¼ 1=4
and d ¼ 1=2, see Appendix A. However, when c–1=2 a direct com-
parison is not straightforward. Therefore we compare the charac-
teristic polynomials of the integration approximation matrices of
the Newmark and q1-Bathe methods: identical characteristic
polynomials provide identical spectral properties.

In the modal equations, the q1-Bathe method and the New-
mark method may be expressed in the form

tþDt€x
tþDt _x
tþDtx

2
64

3
75 ¼ A

t€x
t _x
tx

2
64

3
75þ La

tþcDtr þ Lb
tþDtr ð19Þ

where A, La and Lb are the integration approximation and load
operators, respectively, and x denotes the displacement in modal
space. The characteristic polynomials of A of both methods have
the form:

pðkÞ ¼ k3 � 2A1k
2 þ A2k� A3 ð20Þ

Considering the physical case of no damping, the coefficients of
the characteristic polynomial of the q1-Bathe method are
A1jq1�Bathe¼� 1
2b01b02

ðc2 ðs0�s1Þq2þs2ðq0�q1Þð ÞX4
0

þ �2c2þ4cðq1þs1Þþ4q2ðs0þs1Þþ4s2ðq0þq1Þ
� �

X2
0�8Þ;
A2jq1�Bathe ¼
1

b01b02
ðc2 s0 � s1ð Þ q0 � q1ð ÞX4

0

þ c2 � 4ðq1 þ s1Þcþ 4ðs0 þ s1Þðq0 þ q1Þ
� �

X2
0 þ 4ÞÞ;

ð21Þ



Fig. 2. The two-step Newmark method when n ¼ 0 with a ¼ jðdþ 0:5Þ2 for various values of j and d 6 1:5; Each color indicates a value of d; Each line type indicates a value
of j: solid (j ¼ 0:25), dashed (j ¼ 0:4), dashed dot (j ¼ 0:7), dotted (j ¼ 1:2).
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A3jq1�Bathe ¼ 0 ;

b01 ¼ X2
0c

2 þ 4; b02 ¼ 1þ q2s2X
2
0

and of the Newmark method are
A1jNewmark ¼ 1
8f ð128þ ð64a� 32d� 48ÞX2

0

þð8a2 þ ð�8d� 12Þaþ 4ðdþ 1=2Þ2ÞX4
0 Þ ;
A2jNewmark ¼
1
f

4þ a� dþ 1
2

� �
X2

0

� �2

; ð22Þ

A3jNewmark ¼ 0;

f ¼ ðX2
0aþ 4Þ2;

Using Eqs. (21) and (22), the relations to have identical charac-
teristic polynomials of the amplification matrices are:

a ¼ 1
2
c2 þ 2q2s2
a2 ¼ 4q2s2c2

a� d
2
� 3
4
¼ 1

2
c2 � q1 þ s1ð Þc� q1s2 � s0 þ s1ð Þq2 � q0s2

a� dþ 1
2
¼ 1

2
c2 � 2 q1 þ s1ð Þcþ 2 s0 þ s1ð Þ q0 þ q1ð Þ ð23Þ

a2 � dþ 3
2

� �
aþ 1

2
dþ 1

2

� �2

¼ �2 s0 � s1ð Þq2 þ s2 q0 � q1ð Þð Þc2

a� dþ 1
2

� �2

¼ 4c2 s0 � s1ð Þ q0 � q1ð Þ

Due to the nonlinear nature of the relations in Eq. (23), it is not
feasible to obtain explicit expressions of s0; s1; s2; q0; q1; q2 and c in
terms of the parameters of the Newmark method for arbitrary a
and d. However, with the relations in Eqs. (7)–(9), we find that
the unique solution of Eq. (23) is

a ¼ 1=4; d ¼ 1=2; q1 ¼ 1; c ¼ 1=2 ð24Þ



Fig. 3. The two-step Newmark method when n ¼ 0 with a ¼ jðdþ 0:5Þ2 for various values of j and d P 1:5; Each color indicates a value of d; Each line type indicates a value
of j: solid (j ¼ 0:25), dashed (j ¼ 0:4), dashed dot (j ¼ 0:7), dotted (j ¼ 1:2).
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which indicates that the spectral properties of the final form of the
q1-Bathe method and the two-step Newmark method can only be
identical when both methods become the two-step trapezoidal rule.

In addition, we also find that, without Eqs. (7)–(9) but with
s0 ¼ q0; s1 ¼ q1 and s2 ¼ q2, the spectral properties of the two
methods are identical when the Newmark method uses

a ¼ 0:25ðdþ 0:5Þ2 ð25Þ
and the q1-Bathe method uses

s0 ¼ q0 ¼ �4d2 þ 12d� 1
16dþ 8

; s1 ¼ q1 ¼ 1
2dþ 1

; s2 ¼ q2

¼ 2dþ 1
8

; c ¼ 2dþ 1
4

ð26Þ

for all d.
With the relations in Eq. (26) and d P 1=2, the q1-Bathe

method is unconditionally stable, always has complex conjugate
eigenvalues, and is a first order accurate method except when
d ¼ 1=2, and then the method is the two-step trapezoidal rule.
Note that with Eq. (25), the Newmark method provides the least
numerical dispersion for all d. Therefore, the two-step Newmark
method is a special case of the q1-Bathe method when it provides
least numerical dispersion. Hence with Eq. (26), the solid lines in
Figs. 2 and 3 can be reproduced using the q1-Bathe method with
the parameters in Eq. (26).

With Eq. (26), we also find a useful relation:

c ¼ 1� ffiffiffiffiffiffiffiq1
p

1� q1
; c0 ¼ 0:5 if q1 ¼ 1 ð27Þ

Therefore, we conclude that the relations in Eqs. (26) and (27)
are the parameters to obtain a first order accurate q1-Bathe
method with only one parameter, q1.

Note that the two-step Newmark method with the relations in
Eq. (25) and the q1-Bathe method with the relations in Eq. (26) are
identical to the b1=b2-Bathe method [28] with

b1 ¼ 12d2 � 4dþ 3

2ð2dþ 1Þ2
; b2 ¼ 1þ 2d

6� 4d
ð28Þ
2.3. Accuracy characteristics of the q1-Bathe method and the
Newmark method

The non-spurious roots of the characteristic polynomial in Eq.
(20) are



Fig. 4. The q1-Bathe method when n ¼ 0 with c ¼ cp given in Eq. (38) (solid lines) and other values (dashed lines) for various values of q1 .
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k1;2 ¼
ffiffiffiffiffiffi
A2

p
;�X

�
d

� �
ð29Þ

in polar coordinates, where

X
�
d ¼

tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A2

1

q
=A1Þ for Dt 6 Dt�

tan�1ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � A2

1

q
=A1Þ for Dt > Dt�

ð30Þ

and ðA2
1 � A2ÞjDt¼Dt� ¼ 0 [27].

We have that the numerical damping, n
�
, and the period elonga-

tion, PE, are

n
�
¼ � 1

2X0
lnðA2Þ ¼ � 1

X0
lnðqðAÞÞ ð31Þ

PE ¼ T
�
d � T0

T0
¼ X0

X
�
d

� 1 ð32Þ

where T
�
d is the ‘‘numerical natural period.”

By applying the Taylor series expansion to the numerical damp-

ing, n
�
, we obtain, for the q1-Bathe (Eqs. (1)–(11)) and Newmark

(Eqs. (12)–(17)) methods,
n
�
q1�Bathe ¼

c2ðc� 1Þ2ð1� q2
1Þ

8ð2þ cðq1 � 1ÞÞ2
X3

0 þ OðX5
0Þ ð33Þ

n
�
Newmark ¼

1
8
ð2d� 1ÞX0 þ 1

128
ð1� 2dÞð1� 2dþ 4aÞX3

0

þ OðX5
0Þ ð34Þ

Eqs. (33) and (34) show that the numerical damping ratio of the
q1-Bathe method is O ð X3

0 Þ for all values of c and q1 2 ½0; 1Þ,
while the numerical damping ratio of the Newmark method is
O ð X0Þ except when d ¼ 1=2. The leading term of the numerical
damping ratio of the q1-Bathe method has a local maximum at
c0 defined in Eq. (11).

Similarly, we obtain the expressions for the period elongations
of the q1-Bathe and Newmark methods as

PEq1�Bathe ¼ 2� 2ðq1 þ 2Þ þ 3c2ðq1 þ 1Þ
24þ 12ðq1 � 1Þc X2

0 þ OðX4
0Þ ð35Þ

PENewmark ¼ 1
8
aþ 1

32
d2 � 3

32
dþ 11

384

� �
X2

0 þ OðX4
0Þ ð36Þ



Fig. 5. Model problem of three degree-of-freedom spring system,
xp ¼ 1:2; m1 ¼ 0; m2 ¼ 1; m3 ¼ 1; k1 ¼ 107; k2 ¼ 1:

Fig. 6. Displacement of node 2 as calculated using various methods.

Fig. 8. Velocity of node 2 as calculated using various methods (the static correction
gives the nonzero velocity at time 0.0).

Fig. 7. Displacement of node 3 as calculated using various methods.

Fig. 9. Velocity of node 3 as calculated using various methods.

Fig. 10. Acceleration of node 2 as calculated using various methods.
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The period elongations of both methods are at least O ð X2
0 Þ. The

leading term of the period elongation of the q1-Bathe method is
not zero for q1 2 ½0; 1� and has a local minimum at c0 for
q1 2 ½0; 1�. For the Newmark method, the leading term is not zero

and has a minimumwhen a ¼ 0:25ðdþ 0:5Þ2 in the range of uncon-

ditional stability: d P 0:5 and aP 0:25ðdþ 0:5Þ2
It is also of value to consider q1 2 ½�1;0�. In that case, the lead-

ing term in Eq. (35) can be eliminated and the period elongation of
the q1-Bathe method becomes O ð X4

0 Þ when

q1 ¼ 3c2 � 4cþ 2
cð2� 3cÞ ð37Þ



Fig. 11. Acceleration of node 3 as calculated using various methods. Fig. 12. Reaction force at node 1 as calculated using various methods.
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Since c ¼ 1 is avoided in practice to not encounter a zero
denominator in the constants of the method, the possible range
of q1 is q1 2 ð�1;1�

ffiffiffi
3

p
� with c > 1.

There are two values of c that satisfy Eq. (37): one value with
c > 1 increases to 1.5774 and the other value decreases from 1
to 1.5774 as q1 increases (therefore the ultimate spectral radii,
|q1|, decreases) from �1 to �0.7321 (values are rounded). Since
both c values provide identical spectral properties of the
method, we consider the c value in the range of ð1; 1:5774�, which
we call cp,
cp ¼
q1 þ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
1 � 2q1 � 2

p
3ðq1 þ 1Þ ; q1 2 ð�1;1�

ffiffiffi
3

p
� ð38Þ

Fig. 4 shows the spectral radii, period elongation and numerical
damping ratio of the q1-Bathe method with cp for various values of

q1 2 ð�1;1�
ffiffiffi
3

p
�. We see that with cp, using a value for q1 close

to its limit value (1�
ffiffiffi
3

p
) provides relatively small period
Fig. 13. A clamped bar excited by a step load, and the exact velocity at x ¼ 100. Young’s
L ¼ 200.
elongations but favourable numerical damping. However, since
the negative value of q1 is limited to q1 2 ð�1;1�

ffiffiffi
3

p
�, the spec-

tral radius at large time steps, qðAÞjDt¼1 is also limited to

½�1þ
ffiffiffi
3

p
; 1Þ. Therefore, for general structural dynamics problems,

q1= 0 with c = 0.5 or 2�
ffiffiffi
2

p
is still recommended, see Section 3.1.

For the solution of a problem requiring small dispersion and large
numerical dissipation, but not qðAÞjDt¼1 ¼ 0, like problems of wave
propagations, the negative values of q1 may be useful, see
Section 3.2.
3. Illustrative numerical results

We consider a three degree-of-freedom model problem and a
one-dimensional wave propagation problem to illustrate the prop-
erties of the q1-Bathe and Newmark methods. As in the above
analyses and discussions we always use two equal sub-steps when
employing the Newmark method for a total step of Dt.
modulus E ¼ 3� 107, mass density q ¼ 0:00073, cross-sectional area A ¼ 1, length
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3.1. A three degree-of-freedom model problem

The 3 degree-of-freedom model problem shown in Fig. 5 was
already used in Refs. [25,27,29] to illustrate the behavior of some
time integration schemes when a general structure with stiff and
flexible parts is solved. We refer to Refs. [25,3] for the details of this
model and comments on its importance.

Figs. 6–12 give the results obtained using the q1-Bathe and
Newmark methods. For the q1-Bathe method, we consider two
parameter sets: c ¼ 0:5 with q1 = 0 and c ¼ 1:577 with
q1 ¼ �0:733. For the two-step Newmark method, we use
d ¼ 0:6, 0.9 and 1.5 with j ¼ 0:25.

The figures show that only the q1-Bathe method with c ¼ 0:5
with q1 ¼ 0 performs well. The q1-Bathe method with c ¼ 1:577
and q1 ¼ �0:733 (hence qðAÞjDt¼1 ¼ 0:733) provides the least dis-
persion error in the low frequency range but does not give the
numerical dissipation in the high frequency range important in
the solution of this problem.

When using the q1-Bathe method with c ¼ 0:5 and q1 ¼ 0,
there is an overshoot in the acceleration at node 2 and in the reac-
tion for the first time step. This overshoot can be eliminated by
using a different set of a and d only for the first sub-step, and we
refer to Refs. [3,27] for details.
Fig. 14. Velocity at x ¼ 100 predicted using the two-step Trapezoidal rule.
3.2. One-dimensional wave propagation problem

We consider a clamped bar excited by the constant step load
FðtÞ ¼ 104 at its end as shown in Fig. 13. We use 1000 equal size
two-node elements. This problem was solved using some time
integration methods in Refs. [28,29].

For the solutions, we use the trapezoidal rule, the Newmark, the
b1=b2-Bathe and the q1-Bathe methods. We use c ¼ 1:5774 and
q1 ¼ �0:7321 for the q1-Bathe method, d ¼ 0:6 and 1.5 with
j ¼ 0:25 for the Newmark method, and b1 ¼ 0:39 and b2 ¼ 2b1

for the b1=b2-Bathe method. Note that all the considered methods
are special cases of the q1-Bathe method, see Section 2.2 and Ref.
[29].

The time step sizes used are determined by the CFL number,
which is the ratio of the propagation length per time step (using
the exact wave speed) to the element size:
Dt ¼ CFL� 9:8658� 10�7. We consider various CFL numbers for
each method.

Figs. 14–18 show the velocity at the center of the bar (at node
500) calculated using the methods with various CFL numbers, at
three different time windows. For the first time window
(t = 0.004–0.007) the methods considered (except for the trape-
zoidal rule) provide good results. In particular, the first-order accu-
rate methods, the Newmark method with d ¼ 0:6 and j ¼ 0:25 and
Fig. 15. Velocity at x ¼ 100 predicted using the two-step Newmark method
(j ¼ 0:25, d ¼ 1:5).
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the b1=b2-Bathe method with b1 ¼ 0:39 and b2 ¼ 2b1, provide very
accurate solutions for this time window. The results using the
trapezoidal rule show significant spurious oscillations.

As time increases, however, the solution accuracy using the
first-order accurate methods deteriorates due to large numerical
damping in the low frequency range (see, Fig. 3(b)) while the
results using the q1-Bathe method remain quite accurate
(Fig. 18). Using the q1-Bathe method, with c ¼ 1:5774,
q1 ¼ �0:7321 the solution accuracy only deteriorates mildly with
time due to the small numerical damping in the low frequencies,
see Fig. 4(b).

Among the CFL numbers considered, using the smaller CFL
number provided in this example more accurate solutions when
using the Newmark and Bathe methods as first-order accurate
schemes. However, a further study is needed to identify the CFL
numbers for optimal accuracy of the methods considering the var-
ious values of parameters [40–42].
4. Concluding remarks

We considered in this paper the Newmark and Bathe time inte-
gration schemes for the solution of structural dynamics and wave
propagation problems. The Newmark scheme and in particular the
Fig. 16. Velocity at x ¼ 100 predicted using the two-step Newmark method
(j ¼ 0:25, d ¼ 0:6).
trapezoidal rule are widely used in engineering and scientific
studies.

We first focused on the unconditionally stable Newmark

method with d P 0:5 and a ¼ jðdþ 0:5Þ2, j = 0.25 and showed
that the Newmark method (using two equal sub-steps per time
step) is then a special case of the Bathe method, and that with
these parameters the Newmark method provides the maximum
numerical dissipation and minimum numerical dispersion for a
given d. As widely known when d = 0.5 the second-order accurate
trapezoidal rule is obtained, otherwise the Newmark method is
first-order accurate. The trapezoidal rule is obtained in the
q1-Bathe method with q1 = 1.0 and two equal sub-steps
(c ¼ 0:5). Of course, when the parameters in the q1-Bathe method
are selected to correspond to the Newmark method, the same
solution accuracy is achieved. We also showed that the
b1=b2-Bathe method [28] can be obtained by choosing the appro-
priate parameters in the q1-Bathe scheme, see also Ref. [29].

We found that by varying j and d in the Newmark method and
considering the numerical dissipation, only the values j = 0.25 and
0:5 6 d 6 1:5 are of interest, because for other values the numeri-
cal dissipation does not increase monotonically as the time step
value increases.

The usual q1-Bathe method uses two parameters, q1 = [0, 1]
and c, but the optimal value of c for maximum amplitude decay
Fig. 17. Velocity at x ¼ 100 predicted using the b1=b2-Bathe method (b1 ¼ 0:39,
b2 ¼ 2b1).



Fig. 18. Velocity at x ¼ 100 predicted using the q1-Bathe method (c ¼ 1:5774,
q1 ¼ �0:7321).
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and minimum period elongation is given as a function of q1, hence
we have a one-parameter time integration scheme. With the opti-
mal value of c, the amplitude decay and period elongation are
almost the same as when using c = 0.5.

While the curves of numerical dissipation in the q1-Bathe
method show very little dissipation at small time step values that
rapidly increases as the time step becomes larger, which is very
valuable, the curves for the Newmark method for any j and d con-
sidered here do not have this desirable curvature.

We also considered the values c > 1 and q1 ¼ ½�1;0� and found
that for some analyses, values other than q1 = [0, 1] and the corre-
sponding optimal value of c can be effective parameters to use.

We illustrated the findings of our theoretical study in example
solutions. These solutions exemplify that the q1-Bathe method
with q1 = 0.0 and c ¼ 0:5 (or c ¼ c0 for less computations in linear
analysis) is most effective in structural dynamics when stiff and
flexible parts are considered. Further, in the solution of a one-
dimensional wave propagation problem, we found that the q1-
Bathe method is more effective than the Newmark method. The
trapezoidal rule shows significant oscillations at the wave fronts,
and when the Newmark method is employed with d > 0:5, the
solution is quite accurate for small solution times but not for larger
times because the method is then only first-order accurate. The
same observations hold when using the b1=b2-Bathe method.
On the other hand, when we used the q1-Bathe method, with
q1 < 0 and c > 1:5 good results have been obtained for short
and longer times in the wave propagation problem. We employed
here q1 � �0:75 and c � 1:6; however, further studies are needed
to establish the optimal parameters in the q1-Bathe scheme for
the solution of wave propagation problems [42].
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Appendix A. The two-step Newmark method with a ¼ 1=4,
d ¼ 1=2 and the q‘-Bathe method with q‘ ¼ 1 and c ¼ 1=2 are
identical

When a ¼ 1=4, d ¼ 1=2, q1 ¼ 1 and c ¼ 1=2, it is clear that the
relations in the first sub-steps of the two-step Newmark method
and the q1-Bathe method are identical as

tþDt=2 _U ¼ t _Uþ ½t €Uþ tþDt=2 €U�ðDt=4Þ ðA1Þ

tþDt=2U ¼ tUþ t _UðDt=2Þ þ ½t €Uþ tþDt=2 €U�ðDt2=16Þ ðA2Þ
In the second sub-step, the two-step Newmark method, with

a ¼ 1=4, d ¼ 1=2, Eqs. (16) and (17) becomes

tþDt _U ¼ tþDt=2 _Uþ ½tþDt=2 €Uþ tþDt €U�ðDt=4Þ ðA3Þ

tþDtU ¼ tþDt=2Uþ tþDt=2 _UðDt=2Þ þ ½tþDt=2 €Uþ tþDt €U�ðDt2=16Þ ðA4Þ
With Eqs. (A1) and (A2), Eqs. (A3) and (A4) can be rewritten as

tþDt _U ¼ t _Uþ ½t €Uþ 2tþDt=2 €Uþ tþDt €U�ðDt=4Þ ðA5Þ

tþDtU ¼ tUþ t _UDt þ ½3t €Uþ 4tþDt=2 €Uþ tþDt €U�ðDt2=16Þ ðA6Þ
In the q1-Bathe method with q1 ¼ 1 and c ¼ 1=2, the parame-

ters become s0 ¼ q0 ¼ s2 ¼ q2 ¼ 1=4 and s1 ¼ q1 ¼ 1=2. Thus, the
relations in the second sub-step, Eqs. (5) and (6), become

tþDtU ¼ tUþ ðt _Uþ 2tþDt=2 _Uþ tþDt _UÞðDt=4Þ ðA7Þ

tþDt _U ¼ t _Uþ ðt €Uþ 2tþDt=2 €Uþ tþDt €UÞðDt=4Þ ðA8Þ
With Eqs. (A1) and (A2), Eqs. (A7) and (A8) can be rewritten as

tþDt _U ¼ t _Uþ ½t €Uþ 2tþDt=2 €Uþ tþDt €U�ðDt=4Þ ðA9Þ

tþDtU ¼ tUþ t _UDt þ ½3t €Uþ 4tþDt=2 €Uþ tþDt €U�ðDt2=16Þ ðA10Þ
which are the relations in the second sub-step of the two-step New-
mark method, Eqs. (A5) and (A6).
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